
Solutions, Work Sheet II 

Anouncement:  

we’re planning a field trip to Fraunhofer ISE (Freiburg) on the 22nd of January, 2015. Please give me a 

short answer if you’re interested to join it (michael.oldenburg@kit.edu). More details will follow. 

1. Density and thermodynamics of charge carriers 

a) The integral is similar to the one obtained for photons in a black body: 

𝑛𝑒(𝜖𝐶) = ∫𝐷𝑒(𝜖𝑒)𝑓𝑒(𝜖𝑒)𝑑𝜖𝑒 

The density of states can be calculated out of the total number of states: 

𝐷𝑒(𝜖𝑒) =
𝜕𝑁𝑒
𝜕𝑉𝜕𝜖𝑒

, 𝑁𝑒 = 2
4

3
𝜋
𝑝3

ℎ3
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The dispersion relation for electrons can be assumed to be the one for free electrons but 

with an effective mass 𝑚⋆: 

𝜖𝑒 = 𝜖𝐶 +
𝑝2

2𝑚𝑒
⋆ 

Inserting this into the total number and differentiating with respect to the volume and the 

energy leads to the density of states: 

𝐷𝑒(𝜖𝑒) = 4𝜋 (
2𝑚𝑒

⋆

ℎ2
)
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√𝜖𝑒 − 𝜖𝐶 

The distribution of electrons is described by the Fermi-Dirac distribution function. Integrating 

over the energy leads to the following expression for the Density of charge carriers: 

𝑛𝑒(𝜖𝐶) = 𝑁𝐶 exp (−
𝜖𝐶 − 𝜖𝐹
𝑘𝐵𝑇

) 

The detailed calculation can be found in the book by Peter Würfel. 

b) Holes represent “missing” electrons and so: 

𝑓ℎ(𝜖ℎ) = 1 − 𝑓𝑒(𝜖𝑒) 

c) To find the mean energy one needs to calculate the following integral: 

⟨𝜖𝑒⟩ =
1

𝑛𝑒
∫𝜖𝑒𝐷𝑒(𝜖𝑒)𝑓𝑒(𝜖𝑒)𝑑𝜖𝑒 = 𝜖𝐶 +

3

2
𝑘𝐵𝑇 

This result is significant. It states that the electrons inside a semiconductor can be treated 

like an ideal gas. This is due to the assumption of the slightly modified dispersion relation. 

However, free particles once excited never relax to their previous state and so a 

recombination can only be modeled by additional time dependent terms. 
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2. Illuminated IV characteristic of a solar cell 

For deriving the current of holes (electrons) one needs to start with the current density: 

𝐽ℎ = −𝑞𝐷ℎ
𝑑𝑝

𝑑𝑥
 

An additional equation is the continuity equation: 

𝑞
𝜕𝑝

𝜕𝑡
+
𝜕𝑗ℎ
𝜕𝑥

= 0 

Since the only local charge density change in an illuminated pn junction is due to charge 

generation or recombination processes it can be stated that: 

1

𝑞

𝜕𝑗ℎ
𝜕𝑥

= −(𝑈 − 𝐺) 

Combining the first and last equation leads to the following differential equation: 

𝐷ℎ
𝜕2𝑝

𝜕𝑥2
= 𝑈 − 𝐺 

The recombination rate 𝑈 can be approximated by the relaxation time approximation (or more 

vivid, with an one-particle rate): 

𝑈 =
𝑝ℎ − 𝑝0
𝜏ℎ

=
Δ𝑝

𝜏ℎ
 

Here 𝑝ℎ is the excited hole density, 𝑝0 the equilibrium hole density and 𝜏ℎ the lifetime of an 

excited hole. (This description of the recombination assumes that the number of excited states is 

low and there are enough states into which they can relax. However, for higher concentrations 

hole and electrons need to meet each other resulting in quadratic terms 𝑈~𝑝ℎ𝑛𝑒.) Assuming that 

the equilibrium density distribution for holes is homogeneous in space the second order 

differential equation can be rewritten: 

𝜕2Δ𝑝

𝜕𝑥2
=
Δ𝑝

𝐿ℎ
2 −

𝐺

𝐷ℎ
, 𝐿ℎ = √𝐷ℎ𝜏ℎ 

In the lecture the generation rate was neglected. Yet, we are interested in the illuminated case. 

A general solution for Δ𝑝 is: 

Δ𝑝 = 𝐺𝜏ℎ + 𝐴exp (
𝑥

𝐿ℎ
) + 𝐵 exp (−

𝑥

𝐿ℎ
) 

Hera 𝐴 and 𝐵 are integration constants which can be derived from suitable boundary conditions 

like: 

lim
𝑥→∞

Δ𝑝(𝑥) = 𝑐𝑜𝑛𝑠𝑡.⇒ 𝐴 = 0 

Δ𝑝(0) = 𝑝0 exp (
𝑞𝑉

𝑘𝑇
) 

The second condition was derived on the last work sheet (or in the lecture). Applying those 

constraints to the general solution gives: 

Δ𝑝 = 𝐺𝜏ℎ + [𝑝0 (exp (
𝑞𝑉

𝑘𝑇
) − 1) − 𝐺𝜏ℎ]⏟                  

𝑠𝑒𝑐𝑜𝑛𝑑 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛

exp (−
𝑥

𝐿ℎ
)

⏟      
𝑓𝑖𝑟𝑠𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛

 

Inserting this solution into the current expression gives: 

𝑗ℎ = 𝑞𝐷ℎ
𝜕Δ𝑝

𝜕𝑥
= 𝑞

𝐷ℎ𝑝0
𝐿ℎ

(exp (
𝑞𝑉

𝑘𝑇
) − 1) exp (−

𝑥

𝐿ℎ
) − 𝑞𝐺𝐿ℎ exp (−

𝑥

𝐿ℎ
) 



A similar expression can be found for electrons (with 𝐷𝑒 , 𝐿𝑒). Until now we just included the 

generation rate over the whole region. However, to include the generation of holes inside the 

depletion region an additional term comes from the continuity equation: 

𝛿𝑗𝑒 = 𝛿𝑗ℎ = 𝑞∫ (𝑈 − 𝐺)𝑑𝑥
0

−𝑊

 

It can be assumed that there is no recombination in the depletion region. So: 

𝛿𝑗 = 𝑞𝐺𝑊 

The final solution for the current(!, not density) is: 

𝐼 = 𝐼0 (exp (
𝑞𝑉

𝑘𝑇
) − 1) − 𝐼𝐿, 𝐼𝐿 = 𝑞𝐴𝐺(𝐿𝑒 + 𝐿ℎ +𝑊) 



3. Solar Cell Design 

The equations we need for this task are: 

𝑃𝑀𝑃 = 𝜂𝑃𝑖𝑛 

𝜂 =
𝑉𝑂𝐶𝐼𝑆𝐶𝐹𝐹

𝑃𝑖𝑛
 

a) Here it is needed to find out 𝑃𝑖𝑛 which is: 

𝑃𝑖𝑛 = 𝑆 ⋅ 𝐴 = 100
𝑚𝑊

𝑐𝑚2
⋅ 𝐴 

𝐴 = 3 ⋅ 13 ⋅ (6 𝑐𝑚 ⋅ 1,4 𝑐𝑚) = 327,6 𝑐𝑚2 

𝑃𝑖𝑛 = 32,76 𝑊 ⇒ 𝑃𝑀𝑃 = 2𝑊 

b) Here the challenge was to calculate the surface correctly. 

𝑃𝑀𝑃 = 𝜂𝑆𝐴 = 50 𝑊 

𝐴 = 8333 𝑐𝑚2 

This corresponds to 992 solar cells. Now we must include the area in between the solar cells: 

 

 

 

  

 

 

 

For one cell this loss area is: 

𝐴𝑠𝑖𝑛𝑔𝑙𝑒𝑐𝑒𝑙𝑙 = 2,6 𝑐𝑚
2 ⇒ 𝐴 = 992 ⋅ 𝐴𝑠𝑖𝑛𝑔𝑙𝑒𝑐𝑒𝑙𝑙 = 2530 𝑐𝑚

2 

So that the region of the whole module must be: 

𝐴 = 1,1 𝑚2 

c) Here the second equation is needed. For a regular silicon solar cell the following assumptions can 

be made: 

𝐹𝐹~0,8, 𝑉𝑂𝐶 = 0,5 𝑉 (𝐽𝑆𝐶 =
20𝑚𝐴

𝑐𝑚2
) 

 

 

 

 

 

 

 

 

 

 



4. Anti-reflection coating 

a) Using Fresnel’s expression for the reflected amplitudes: 

𝑟01 =
𝑛0 − 𝑛1
𝑛0 + 𝑛1

= 𝑟12 =
𝑛1 − 𝑛2
𝑛1 + 𝑛2

 

𝑛1 = √𝑛2𝑛0 

This is the condition that the amplitudes of both light rays are the same. For air the 

refrective index is 𝑛0 = 1 and for glass 𝑛2 = 1,46. So the refrective index for the thin layer 

should be: 

𝑛1 = √1,46 

b) The phase difference between both rays must be Δ𝜙 = 𝜋 or expressed in lengths: 

Δ𝑥 = 𝑘
𝜆0
2
, 𝑘 = 2𝑁 + 1,𝑁 ∈ ℕ 

The ray passes twice the anti-reflexion coating and so: 

2𝑑𝑛1 = 𝑘
𝜆0
2

 

 


